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Using ctDNA to help diagnose cancer

* Cancer tissue of origin defines the disease course —and the treatment

* Treatment success varies by tissue of origin, and often depends on
specific somatic alterations

* Sometimes we cannot biopsy a tumour — primary cannot be found, or
is inaccessible

* We can use ctDNA to diagnose tissue of origin and evaluate
targetable mutations



ctDNA fragments depends on nucleosome positions

- So does gene expression!

e Plasma from 104 healthy individuals
show cfDNA mostly reflects
hematopoietic cells

* Analysis of 426 plasma samples from
cancer patients shows that in high
tumour burden metastatic patients,
transcription start site was
identifiable from cancer driver genes
with copy number amplification

* Requires high levels of ctDNA &
amplification of target gene

Ulz et al, Nature Genetics 2016
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ctDNA coverage can be used
to infer high/low expression of
specific genes

Evaluating gene expression change is difficult, but high/low
levels of specific genes is feasible

Different tissues activate specific transcriptional programmes, this
approach may be used to infer tissue of origin

Ulz et al, Nature Communications 2019



Ca

oW about somatic alterations?

n ctDNA replace a tissue biopsy?



Evidence suggest ctDNA is effective for molecular characterisation,
and may be robust to intratumour heterogeneity!
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Intratumour heterogeneity and longitudinal
ctDNA tracking of cancer evolution

e Cancer evolution is continuous, both before and after
treatment

* We can biopsy and characterise a tumour, but how do we
track the status of the evolving disease during and after

therapy!?
* Using phylogenetic analysis & longitudinal ctDNA
tracking



TRACERX: Tracking Cancer Evolution through Therapy

Multi-Region Sequencing

*  Whole-Exome Seq
* Bulk RNA-seq

Jamal-Hanjani, NEJM 2017
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Using mutations to infer phylogenetic
relationship and clonality

Subclonal mutations
“The Branches” i\ /l

Clonal mutations | Clonal, trunk
“The Trunk”

Clones R1 R2 R3 R4

Subclonal, branches




* Phylogenetic analysis reveals subclonal architecture

’ |
* Branches are independent clones i\/l )/
AN .
|

* May harbour unique drivers

“driver 1” “driver 2” “driver 4”

“driver 3” ‘

0\ L »

Clone 1



Lung cancer tumours highly heterogeneous

* Some tumours
show extensive
intratumour
heterogeneity

e Subclonal drivers
may define
metastatic disease

* How do we track
which subclone
drives disease
relapse?

Jamal-Hanjani et al. NEJM (2017)
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Bespoke multiplex PCR NGS ctDNA profiling

Primary NSCLC resection Exome sequencing Phylogenetic tree informs
and multiregion sampling of tumor regions  PCR-assay panel construction
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Clonal

Abbosh et al. Nature (2017)



Bespoke multiplex PCR NGS ctDNA profiling

Primary NSCLC resection Exome sequencing Phylogenetic tree informs
and multiregion sampling of tumor regions  PCR-assay panel construction
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Abbosh et al. Nature (2017) targeting patient-specific SNVs



Bespoke multiplex PCR NGS ctDNA profiling

Primary NSCLC resection Exome sequencing Phylogenetic tree informs
and multiregion sampling of tumor regions  PCR-assay panel construction
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Clonal SNVs show higher VAF

m====_ Nean clonal VAF ===== NMean subclonal VAF
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Clonal SNVs easier to detect compared to

LUSC

subclonal at baseline

Other LUAD

i

Mg

B Detected clonal SNV

|| Clonal SNVs
in assay-panel

B Detected subclonal SNV

Sub-clonal SNVs
in assay-panel

Branch mutations
Shared by some
cancer cells

Source of resistan

Trunk mutations
Shared by all
cancer cells

Ideal targets



Analysis performed on 96 lung cancer patients
48% of cases detected by ctDNA, including almost all
squamous non-small cell lung cancer (NSCLC LUSC)
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Not all patients with cancer have detectable ctDNA

Tumour burden correlates with ctDNA amount in plasma

ctDNA assay limit of detection

Estimation

a Maximum detectable MAF

100+

10+
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L Nodule |
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|
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0.01- volume |
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|
T stage 13 T1c ; Tib
|

Abbosh, Birkbak Nature reviews Oncology 2018



Not all patients with cancer have detectable ctDNA
ctDNA assay limit-of-detection will limit MRD prevalence

Wzo negative
Study 1 but has residual
SURGERY screening |disease Relapse
|
| Relapse A
O deTeFi?ed _ l | Measurable
'g Adjuvant | disease on scan
= chemo
<y _ _ _ _ _ _ _ _ IRy $ N Bz 09090 v
[
5 MRD detection
5 space
o - - - - - - - - - - - - — - - . - A
S Primafy t PATIENT 1 Tumor burden below
Y Rmor PATIENT 2 |
development + ctDNA assay LOD
< >» (0 < » 1000

Years pre-surgery Days post-surgery



Phylogenetic tracking K) !
{
\

* Tracking metastatic tumor evolution through the nodes in the
phylogenetic tree

e 24 patients tracked longitudinally
* 12 relapse, 12 controls (median follow-up for controls, 775 days)
e 2 controls relapsed during study

* Median lead-time was 70 days before confirmed by CT-scan (range
10- 346)



Tracking tumor clones in control cases shows
rapid loss of detection of SNVs
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Tracked SNVs increase prior to confirmed relapse,
phylogenetic tracking identifies the relapsing subclone

Relapse cases

Mutation VAF (%)

Mutation VAF (%)
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Phylogenetic tracking via ctDNA allows early
detection and identifies the relapsing subclone
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Phylogenetic tracking via ctDNA allows early
detection and identifies the relapsing subclone
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ctDNA tracking also shows residual disease —
and the effect of adjuvant therapy
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Minor subclone from CRUKOO63 primary
caused relapse, death
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CRUKOO63 was recruited to PEACE — a fast
autopsy program

Para-vertebral Lung Para-aortic

— T T T =~

* CRUKOO063 subjected to autopsy within 24
hours of death

* Multiple metastatic lesions resected
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T8-9 para-vertebral mass
(biopsy day 467)

Phylogenetic tree revealed likely
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Mutation allele frequency

ctDNA profiling identifies Trunk mutations
from Branch mutations
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Clonal Shared Private Phylogenetic
@ ® Bl clusters
11 8 12 910132 3 5
Chemo Relapge RTx Chemo Chemo
1 = |
0.5 =
Trunk mutations
01 7 Shared by all
cancer cells
Ideal targets
1 | I | I I I |
N Q A A A
S G W ® P e A0 & &
3© QA
) e

Days since diagnosis



Mutation allele frequency

ctDNA profiling identifies Trunk mutations
from Branch mutations
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Trunk mutations in ctDNA monitors cancer
growth and drug sensitivity

Subclonal
Clonal  Shared Private Phylogenetic
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Trunk mutations in ctDNA monitors cancer
growth and drug sensitivity

Mutation allele frequency
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Clonal Shared Private Phylogenetic
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summary
ctDNA to decide treatment and disease tracking

D U U P e | e
Serial liquid biopsies | ]
- e e - -

Cancer detection: Molecular Detection Monitori L
_— : - . onitoring Monitoring
screening or profiling or of residual respOnse clonal evolution
earlier diagnosis  prognostication disease P
@ Clone 1
) Clone 2
@® Clone 3

A

‘ Surgery (or other) I—T Treatment 1 Treatment 2 |

Size of clone

Time

Treatment selection

Wan, Nature Reviews Cancer, 2017



ctDNA as a pre-adjuvant MRD biomarker:

Advantages:
Treating post-operative *  Enrich for small populations with low DFS and high-event rate — targets for
J residual disease combination therapy?

Adjuvant SOC

Limitations:
* Biological constraints (e.g. metastatic dormancy)?
* Large number of patients to adequately power interventional studies (high-screen

Randomise Combination

Resectable NSCLC failure rate).
* Logistical considerations to return result before adjuvant SOC decision especially
with personalised panels.
Colorectal cancer Breast cancer
ctDNA detection at D30 8 B
A Al no-chemo patients Post-surgery anecadinant ‘il Srger l l Standard follow-up
100+ Postoperative ctDNA-negative (n = 164) 04\ y I
ctDNA negative (day 30)
o - -t
% 804 g o : MY e | 1 =l ctDNA detected
£ o0 HR, 18 (95% Cl, 7.9-40) £ % g IRt asee
g g il (HR, 7.2; 95% CI, 2.7-19.0; P < .001) E
g 401 : 3 so- n=30
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g 20- ctDNA positive (day 30) E
o 0+ ; ; ; P <0.0001
0 ’ 1T‘Jlme Since Surgery, rmf-1 " HR.25.1 (C1, 4.08-130.5)
0 12 24 36 48 60  No.atrisk o T T T T T T
5 Negative 84 78 13 9 [1] 6 12 18 24 30 36
Months since surgery Positive 10 9 1 1

Months post-surgery

Tie J, STM 2016 Reinert T, JAMA 2019 Garcia-Murillas I, STM 2015



ctDNA as a post-adjuvant MRD biomarker:

Advantages:
_ * larger proportion of DFS events across a population identified.
Regular ctDNA sampling

Adjuvant SOC Lrelapse | * CtDNA monitoring feasible at frequencies exceeding imaging

l [facilitates intervention at small disease volumes].

Treating micro-metastic disease

Intervene -
e Decreases screen failure rate
Resectable NSCLC _
Disadvantages:
e Translatable into routine practice, relationship with
surveillance imaging?
A: CRUKO045: LUAD CRUK0063: LUSC B:
Lung, mediastinal relapse _ \.%'F'aravertebral relspﬁ ',«- e Letrozole
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. M 4
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A: Abbosh et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution, Nature 545, 2017
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Main take-away

* ctDNA has immediate utility in early relapse detection

* ctDNA may be used for molecular characterisation
* Improved diagnosis
* |dentify tissue of origin
* Overcome intratumour heterogeneity

* Phylogenetic tracking reveals lethal metastatic clone, metastatic
disease dynamics and cancer evolution



Sy

* Why are clonal mutations easier to detect? Are there other .

mutations that might be better to track?

Discussion points

* When is phylogenetic tracking of relapse relevant? Does it depend on
cancer type?

* Consider clinical trial settings for cancer drugs. Expensive, requires
lots of patients. What are the potential benefits of incorporating
ctDNA here?
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